Περιέχει:
Συνήθεις διαφορικές εξισώσεις 1ης τάξης, Γραμμικές ΣΔΕ 2ης τάξης, Γραμμικές ΣΔΕ Ανώτερης, Συστήματα ΣΔΕ, Χώρος φάσεων, Ποιοτικές μέθοδοι, Επίλυση ΣΔΕ με δυναμοσειρές, Ειδικές συναρτήσεις, Μετασχηματισμός Laplace, Γραμμική άλγεβρα, Διανύσματα, Ορίζουσες, Γραμμική Άλγεβρα: Πίνακες, Διανύσματα, Ορίζουσες, Γραμμικά Συστήματα, Διανυσματικός Διαφορικός Λογισμός, Κλίση, Απόκλιση, Στροβιλισμός, Διανυσματικός Ολοκληρωτικός Λογισμός, Θεωρήματα Ολοκλήρωσης, Ανάλυση Fourier, Μερικές Διαφορικές Εξισώσεις, Μιγαδικοί αριθμοί, Μιγαδικές συναρτήσεις, Μιγαδική παραγώγιση, Μιγαδική ολοκλήρωση, Δυναμοσειρές, Σειρές Taylor, Σειρές Laurent, Ολοκληρωτικά υπόλοιπα, Σύμμορφη απεικόνιση, Μιγαδική Ανάλυση και Θεωρία Δυναμικού, Εισαγωγή στην Αριθμητική Ανάλυση, Αριθμητικές Αλγεβρικές Μέθοδοι, Αριθμητική επίλυση ΣΔΕ και ΜΔΕ, Βελτιστοποίηση χωρίς περιορισμούς, Γραμμικός Προγραμματισμός, Γράφοι, Συνδυαστική Βελτιστοποίηση, Ανάλυση Δεδομένων, Θεωρία Πιθανοτήτων, Μαθηματική Στατιστική