Το βιβλίο "Ανώτερα Μαθηματικά " απευθύνεται στους προπτυχιακούς φοιτητές των πανεπιστημιακών σχολών που ενδιαφέρονται στις εφαρμογές των μαθηματικών. Αποτελείται από δύο τόμους και το περιεχόμενο τους αντιστοιχεί στην ύλη μαθημάτων που καλύπτουν Μαθηματικό Λογισμό και Γραμμική Άλγεβρα. Υπάρχουν και κάποια κεφάλαια που αφορούν πιο προχωρημένα θέματα.
Ειδικότερα ο παρών Β τόμος αφορά κυρίως την γραμμική άλγεβρα και αποτελείται από 20 κεφάλαια. Αρχίζει με το εισαγωγικό κεφάλαιο {Β1} στο οποίο παρουσιάζονται οι αλγόριθμοι Gauss και Gauss-Jordan, ως βασικά εργαλεία για την επίλυση γραμμικών συστημάτων αλλά και για την αλγοριθμική αντιμετώπιση πολλών προβλημάτων που παρουσιάζονται στη συνέχεια.
Τα επόμενα δύο κεφάλαια {Β2,Β3} καλύπτουν τις βασικές έννοιες των διανυσματικών χώρων: υπόχωροι, βάσεις, ορθογωνιότητα, καταλήγοντας με την Gram-Schmidt ορθογωνοποίηση. Η παρουσίαση είναι στο γενικό επίπεδο των η διαστάσεων, οπότε θα ήταν σκόπιμη η ταυτόχρονη αναφορά στα δύο πρώτα κεφάλαια του Α τόμου {Α1,Α2} όπου οι έννοιες αυτές παρουσιάζονται στη πιο συγκεκριμένη μορφή των διανυσμάτων του δισδιάστατου επιπέδου και του τρισδιάστατου χώρου.
Ακολουθούν τρία κεφάλαια {Β4,Β5,Β6} στα οποία αναπτύσσεται ο βασικός λογισμός των πινάκων, και παρουσιάζονται σχετικές έννοιες: τάξη, γραμμοχώρος, στηλοχώρος, αντίστροφος, ορίζουσα, με έμφαση στην αλγοριθμική επίλυση των σχετικών προβλημάτων.
Στα κεφάλαια {Β7,Β8} η παραπάνω θεωρία των γραμμικών συστημάτων και των πινάκων εντάσσεται στην γενική θεώρηση των γραμμικών απεικονίσεων. Παρουσιάζονται οι τέσσερεις βασικοί υπόχωροι που συνδέονται με τον πυρήνα και την εικόνα, και εξετάζονται οι σχέσεις ισοδυναμίας και ομοιότητας πινάκων στο πλαίσιο της αλλαγής βάσεων συντεταγμένων.
Το βασικό μέρος της ύλης κλείνει με τα κεφάλαια {Β9,Β10,Β11,Β12} τα οποία ασχολούνται με ειδικές κατηγορίες πινάκων: συμμετρικοί, ορθογώνιοι, ισομετρίες, προβολές, ανακλάσεις, καθώς και με την χρήση των πραγματικών ιδιοτιμών στη μελέτη πινάκων και απεικονίσεων.
Στέλνουμε στη διεύθυνση που επιλέγετε μοναδικές προσφορές που θα ήταν κρίμα να τις χάσετε!